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The Alfven wave dispersion relation modifies into Kinetic Alfven wave 
KAW when the perpendicular wavelength becomes comparable to the 
ion gyro radius. The inclusion of ion motion produces nonlinear coupling 
of KAW with ion acoustic wave through the coupling parameter 𝜆𝑠. 
These coupled KAW are believed to play dynamic role in plasma heating, 
particle acceleration and anamolous transport. Here we have 
investigated the properties of this coupled Solitary KAWs by using two 
potential theory and Sagdeev potential approach. We employ 
generalized (r,q) distribution function and the numerical results are 
promising to give excellent fits with observations of Freja, FAST and 
MMS. We have shown that there are regions of propagation and non-
propagation for such solitary structure which is largely dependent upon 
angle of propagation. 

Abstract

The Alfven wave dispersion relation modifies into Kinetic
Alfven wave KAW when the perpendicular wavelength
becomes comparable to the ion gyro radius. The inclusion of
ion motion produces nonlinear coupling of KAW with ion
acoustic wave through the coupling parameter 𝜆𝑠 . These
coupled KAW are believed to play dynamic role in plasma
heating, particle acceleration and anomalous transport. Here
we have investigated the properties of this coupled Solitary
KAWs by using two potential theory and Sagdeev potential
approach. We employ generalized (r, q) distribution function
and the numerical results are promising to give excellent fits
with observations of Freja, FAST and MMS. We have shown
that there are regions of propagation and non-propagation
for such solitary structure which is largely dependent upon
angle of propagation.
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The closed set of equations is
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To find density, we use distribution function as next

𝑆 Ψ |Ψ=0 = 0 𝑆′ Ψ |Ψ=0 = 0 𝑆′′ Ψ |Ψ=0 < 0

𝑆 Ψ |Ψ=Ψ𝑚𝑎𝑥
= 0 𝑆′ Ψ |Ψ=Ψ𝑚𝑎𝑥

> 0

We can get compressive solitary structures for following conditions of  Sagdeev 
Potential, we get two regions of propagation.
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Sagdeev potentials (Left), corresponding compressive solitons (center) for different existence regions
and Mach numbers MA=0.257 (bold), 0.258 (thin), 0.259 (dashed), MA=0.85 (bold), 0.88 (thin), 0.9

(dashed) when r= 2, 𝑞 = 3, 𝜃 = 0.8
𝜋
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and 𝛽 = 0.1 and maximum value of potential (right) for

different propagation angles.

Numerical Analysis
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Normalizations
We get stationary solution using comoving frme 𝜉 = 𝐾𝑥𝑋 + 𝐾𝑧𝑍 −𝑀𝜏, 
Also normalize variables as 𝑁 =
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we obtain the following equation which is analogous to the energy integral. 
Where S(Ψ) is the Pseudopotential or so-called Sagdeev potential.

1. For lower range of Alfven Mach number, width and amplitude of soliton increases
but it shows opposite behavior for region of lower Alfven Mach number. The value
of potential is much higher for higher velocity region as compared to low velocity
region.

2. Moreover, since the parameter ξ is normalized by the ion-acoustic larmor radius, it
shows that the maximum scale length of the formation of solitary structures varies
from one sixth of a Kilometer for higher velocities to one twelfth of a Kilometer for
lower range of velocities.

3. For low-velocity region, maximum potential increases with increase in angle of
propagation. In contrast to that, for high-velocity range maximum potential
increases with decrease in propagation angle.
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